成績を上げるためには自宅学習!

数学の解説動画の作成開始しました。
チャンネル登録お願いいたします。

動画ページへ

【数学ⅡB】多項式の割り算【自治医科大・明治薬科大】

多項式の割り算(除法) 数学IAIIB
スポンサーリンク

多項式の割り算に関する問題

2018年 明治薬科大整式 $x^4-2x^3+x-2$ を整式 $P(x)$ で割ると商が $x^2+1$,余りは $3x-1$ であるという。このとき $P(x)=\myhako$ である。
【考え方と解答】
割られる式,割る式,商,余りの関係より
\begin{align*}
x^4-2x^3+x-2=P(x)(x^2+1)+3x-1
\end{align*}
が成り立つ。この等式から $P(x)$ を求めよう。
\begin{align*}
P(x)(x^2+1)=x^4-2x^3-2x-1
\end{align*}
よって,$P(x)$ は $(x^4-2x^3-2x-1)\div(x^2+1)$ の商であることが分かる。
多項式の割り算を筆算で行う
 今回の場合で,係数のみの筆算をするなら,係数が0の部分をただ空けておくだけでは分かりにくいため,その項がないことがはっきりと分かるように係数の0を書いた方が良いだろう。
 割り算の計算の結果より
\begin{align*}
P(x)=x^2-2x-1
\end{align*}
タイトルとURLをコピーしました