成績を上げるためには自宅学習!

数学の解説動画の作成開始しました。
チャンネル登録お願いいたします。

動画ページへ

【数学Ⅰ】定期テストに出題される2文字の対称式に関する問題

【数学Ⅰ】定期テストに出題される対称式に関する問題 数学IAIIB
スポンサーリンク

定期テストで実際に出題された対称式に関する問題4

対称式に関する問題4$x=\dfrac{2}{\sqrt{5}+1}$,$y=\dfrac{\sqrt{5}+1}{2}$ のとき,次の式の値を求めよ。
(1) $x+y,~xy$
(2) $x^2+y^2$
(3) $x^3+y^3$
ヒロ
ヒロ

$xy=1$ になることはすぐに分かるはずで,そこから $x=\dfrac{\sqrt{5}-1}{2}$ と分かるね。

【(1)の解答】
\begin{align*}
x+y&=\dfrac{2}{\sqrt{5}+1}+\dfrac{\sqrt{5}+1}{2} \\[4pt]
&=\dfrac{\sqrt{5}-1}{2}+\dfrac{\sqrt{5}+1}{2} \\[4pt]
&=\sqrt{5} \\[4pt]
xy&=\dfrac{2}{\sqrt{5}+1}\times\dfrac{\sqrt{5}+1}{2} \\[4pt]
&=1
\end{align*}

(2) $x^2+y^2$

ヒロ
ヒロ

サクサク解いていこう。

【(2)の解答】
\begin{align*}
x^2+y^2&=(x+y)^2-2xy \\[4pt]
&=(\sqrt{5})^2-2\Cdota1 \\[4pt]
&=3
\end{align*}

(3) $x^3+y^3$

【(3)の解答】
\begin{align*}
x^3+y^3&=(x+y)^3-3xy(x+y) \\[4pt]
&=(\sqrt{5})^3-3\Cdota1\Cdota\sqrt{5} \\[4pt]
&=5\sqrt{5}-3\sqrt{5} \\[4pt]
&=2\sqrt{5}
\end{align*}

定期テストで実際に出題された対称式に関する問題5

対称式に関する問題5$x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}$,$y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$ のとき,次の式の値を求めよ。
(1) $x+y,~xy$
(2) $x^2+y^2$
(3) $x^3+y^3$
(4) $x^5+y^5$
ヒロ
ヒロ

面倒だなぁって思うだろうけど頑張ろう。

【(1)の解答】
\begin{align*}
x+y&=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \\[4pt]
&=\dfrac{(\sqrt{5}-\sqrt{3})^2+(\sqrt{5}+\sqrt{3})^2}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} \\[4pt]
&=\dfrac{2(5+3)}{2} \\[4pt]
&=8 \\[4pt]
xy&=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\times\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \\[4pt]
&=1
\end{align*}
ヒロ
ヒロ

和と差の2乗の和の公式を使っている。

和と差の2乗の和
\begin{align*}
(x+y)^2+(x-y)^2=2(x^2+y^2)
\end{align*}

(2) $x^2+y^2$

ヒロ
ヒロ

$x+y$ と $xy$ を求めた後は今までと同じだね。

【(2)の解答】
\begin{align*}
x^2+y^2&=(x+y)^2-2xy \\[4pt]
&=8^2-2\Cdota1 \\[4pt]
&=62
\end{align*}

(3) $x^3+y^3$

ヒロ
ヒロ

この式変形も慣れてきただろう。

【(3)の解答】
\begin{align*}
x^3+y^3&=(x+y)^3-3xy(x+y) \\[4pt]
&=8^3-3\Cdota1\Cdota8 \\[4pt]
&=8\times(64-3) \\[4pt]
&=8\times61 \\[4pt]
&=488
\end{align*}

(4) $x^5+y^5$

ヒロ
ヒロ

最後は5乗の和だけど,ここまで解けたら分かるかも?

ヒロ
ヒロ

すでに2乗の和と3乗の和の値が分かっているから,再利用できるように変形していこう。

【(4)の解答】
\begin{align*}
x^5+y^5&=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y) \\[4pt]
&=62\times488-1^2\times8 \\[4pt]
&=30248
\end{align*}
タイトルとURLをコピーしました