成績を上げるためには自宅学習!

自宅学習には様々な形態がある!

Z会・進研ゼミなどの通信教育以外にも,オンライン家庭教師を利用することで,自宅にいながらプロ講師の指導を受けることができる!

詳細はこちら

【数学ⅡB】多項式の割り算を利用する問題【青山学院大・早稲田大】

スポンサーリンク
多項式の割り算(除法)を利用する入試問題数学IAIIB

スポンサーリンク

多項式の割り算を利用する問題2

2014年 早稲田大$\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ の小数部分を $a$ とするとき,$a$ は2次方程式 $x^2+\myBox{ア}\,x+\myBox{イ}=0$ の解であり,$a^3+6a^2-21a+23$ の値は $\myBox{ウ}+\myBox{エ}\sqrt{\myBox{オ}}$ である。
【考え方と解答】
 まずは小数部分の $a$ を正確に求めよう。
\begin{align*}
\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}&=(\sqrt{3}+\sqrt{2})^2 \\[4pt]&=5+2\sqrt{6}=5+\sqrt{24}
\end{align*}
ここで $4<\sqrt{24}<5$ であるから,$9<5+\sqrt{24}<10$ となる。
 よって,$\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ の整数部分は9であり,
\begin{align*} a=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-9=2\sqrt{6}-4 \end{align*}
この結果から $a+4=2\sqrt{6}$ となり,両辺を2乗すると
\begin{align*} &(a+4)^2=24 \\[4pt] &a^2+8a-8=0 \end{align*}
したがって,$a$ は2次方程式 $x^2+8x+(-8)=0$ の解である。
 次に $a^3+6a^2-21a+23$ の値を求めよう。$(x^3+6x^2-21x+23)\div(x^2+8x-8)$ を計算すると,次のようになる。
多項式の割り算を筆算で行う
 したがって
\begin{align*} a^3+6a^2-21a+23&=(a^2+8a-8)(a-2)+3a+7 \\[4pt] &=3a-7=3(2\sqrt{6}-4)+7 \\[4pt] &=-5+6\sqrt{6} \end{align*}
タイトルとURLをコピーしました