2016年 香川大・医

3つの数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ を次のように定める。

$$a_1 = 3, b_1 = 2, c_1 = 1,$$

$$a_{n+1} = \frac{b_n + c_n}{4},$$

$$b_{n+1} = \frac{c_n + a_n}{4},$$

$$c_{n+1} = \frac{a_n + b_n}{4} \ (n = 1, 2, 3, \cdots)$$

このとき,次の間に答えよ。

- (1) $a_n + b_n + c_n$ を n を用いて表せ。
- (2) $a_n b_n$, $a_n c_n$ をそれぞれ n を用いて表せ。
- (3) a_n , b_n , c_n をそれぞれ n を用いて表せ。

- 2013 年 筑波大 —

3つの数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ が

$$a_{n+1} = -b_n - c_n \ (n = 1, 2, 3, \cdots)$$

$$b_{n+1} = -c_n - a_n \ (n = 1, 2, 3, \cdots)$$

$$c_{n+1} = -a_n - b_n \ (n = 1, 2, 3, \cdots)$$

および $a_1 = a$, $b_1 = b$, $c_1 = c$ を満たすとする。ただし, a, b, c は定数とする。

- (1) $p_n=a_n+b_n+c_n$ $(n=1,2,3,\cdots)$ で与えられる数列 $\{p_n\}$ の初項から第 n 項までの和 S_n を求めよ。
- (2) 数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ の一般項を求めよ。
- (3) 省略

2008 年 金沢医科大

三つの数列 $a_n,\ b_n,\ c_n$ が任意の $n=1,2,3,\cdots$ に対して, $a_n+b_n+c_n=1$ を満たしていて, $a_1=1,\ b_1=c_1=0$ とする。また, $a_{n+1},\ b_{n+1},\ c_{n+1}$ は $a_n,\ b_n,\ c_n$ により

$$a_{n+1} = \frac{1}{2}(b_n + c_n)$$

$$b_{n+1} = \frac{1}{2}(a_n + c_n)$$

$$c_{n+1} = \frac{1}{2}(a_n + b_n)$$

と表されている。このとき,
$$a_n$$
 は $a_n=\frac{1}{ }\left(1-\left(-\frac{ }{ }\right)^{n-2}\right)$ となる。さらに, b_n は

$$b_n = \frac{ }{ } + \frac{1}{ } \left(- \frac{ }{ } \right)^{n-2}$$
 となる。

